Spectroscopic evidence of 3-hydroxyflavone sorption within MFI type zeolites: ESIPT and metal complexation.

نویسندگان

  • A Moissette
  • M Hureau
  • A Kokaislova
  • A Le Person
  • J P Cornard
  • I De Waele
  • I Batonneau-Gener
چکیده

Due to its chemical and photochemical properties and potential applications in numerous domains as a molecular probe, 3-hydroxyflavone (3HF) is a molecule of high interest. In particular, the processes of intramolecular proton transfer in the excited state and metallic complexation are known to be dependent on the chemical environment. In this context, the particular properties of zeolites make these microporous materials an environment adapted to study the reactivity of isolated molecules adsorbed in their porous void space. Thus, this report investigates the incorporation without any solvent of 3HF into the internal volume of various channel-type MFI zeolites. Using complementary techniques (diffuse reflectance UV-vis absorption, Raman scattering, FTIR, fluorescence emission and molecular modelling), very different spectral behaviours are observed in totally dealuminated silicalite-1 and in Al rich MZSM-5 (M = H(+), Na(+), Zn(2+)). In silicalite-1, the non-polar and non-protic internal micro-environment does not induce any valuable interaction between 3HF and the channel walls. Therefore, the molecule shows easy tautomer formation upon excitation. Within HZSM-5, 3HF is adsorbed in close proximity of the acid proton of the zeolite which inhibits the intramolecular proton transfer and then, only the normal form is observed at the excited state. For NaZSM-5, the spectral data show an intermediary behaviour due to the aprotic but polar environment, in agreement with 3HF sorption in close proximity of the Na(+) extra framework cation. After mixing 3HF and ZnZSM-5, the spectral features clearly indicate metallic complexation of the guest molecule. The zeolite dependent reactivity reported here demonstrates the adsorption of the guest within the internal volume because the charge balancing cations which clearly control the reaction are principally located in the zeolite channels. The 3HF incorporation into the internal volume is proved by the decrease of the microporous volume observed by nitrogen adsorption-desorption isotherm measurements. The experimental data are confirmed by Monte Carlo molecular modelling which also predicts 3HF sorption in the zeolite channels in the proximity of charge compensating cations. Consequently, as the molecule dimensions are assumed to be slightly larger than the channel size, the flexibility of the molecule and the lattice deformation have to be considered to allow 3HF penetration into the zeolite void space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Configurational Entropy and Intersection Blocking Effects in Multi- component Systems in MFI-type Zeolites Studied by IR Microscopy

1. Introduction Diffusion is important in many technological processes, particularly those that utilize nanoporous materials like zeolites for adsorptive separations and catalysis, where mass transfer is often the rate-limiting step. For understanding and predicting such processes knowledge of the adsorption and diffusion behaviour of molecular mixtures is essential. It is known, that branched ...

متن کامل

Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement.

The encapsulation of metal clusters (Pt, Ru, Rh) within MFI was achieved by exchanging cationic metal precursors into a parent zeolite (BEA, FAU), reducing them with H2 to form metal clusters, and transforming these zeolites into daughter structures of higher framework density (MFI) under hydrothermal conditions. These transformations required MFI seeds or organic templates for FAU parent zeoli...

متن کامل

Microscopic Analysis of Phase Transition Effects during Benzene Sorption in MFI Type Zeolites

Fig. 1: Silicalite-1 crystal, top: building scheme with 90° rotated subunits, bottom: picture of the x-z-plane in normal optical mode (transmission). 1. Introduction Adsorption of aromatic hydrocarbons in MFI zeolites has been intensively studied due to the importance of ZSM-5 and the aluminium-deficient analogue, Silicalite-1, in catalysis and separation. Applying different macroscopic techniq...

متن کامل

Entropy effects during sorption of alkanes in zeolites.

Recent developments in Configurational-Bias Monte Carlo (CBMC) techniques allow the accurate calculation of the sorption isotherms for alkanes, and their mixtures, in various zeolites. The CBMC simulations give new insights into subtle entropy effects affecting mixture adsorption. Three types of entropy effects can be distinguished. (1) Size entropy effects favour the component with the smaller...

متن کامل

Synthesis and characterization of nanocrystalline and mesoporous zeolites

Mesoporous aggregates of nanocrystalline zeolites with MFI and BEA frameworks have been synthesized using a one-pot and single structure directing agent. The effect of different reaction conditions, such as temperature, time, pH and water content, on the particle size, surface area and mesopore volume has been studied. Nanocrystalline and mesoporous ZSM-5, β and Y zeolites were modified with di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 39  شماره 

صفحات  -

تاریخ انتشار 2015